A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia

Tiziana Borsello1, Peter G H Clarke1, Lorenz Hirt4, Alessandro Vercelli2, Mariaelena Repici2, Daniel F Schorderet3, Julien Bogousslavsky4 & Christophe Bonny3

Neuronal death in cerebral ischemia is largely due to excitotoxic mechanisms, which are known to activate the c-Jun N-terminal kinase (JNK) pathway. We have evaluated the neuroprotective power of a cell-penetrating, protease-resistant peptide that blocks the access of JNK to many of its targets. We obtained strong protection in two models of middle cerebral artery occlusion (MCAO): transient occlusion in adult mice and permanent occlusion in 14-d-old rat pups. In the first model, intraventricular administration as late as 6 h after occlusion reduced the lesion volume by more than 90% for at least 14 d and prevented behavioral consequences. In the second model, systemic delivery reduced the lesion by 78% and 49% at 6 and 12 h after ischemia, respectively. Protection correlated with prevention of an increase in c-Jun activation and c-Fos transcription. In view of its potency and long therapeutic window, this protease-resistant peptide is a promising neuroprotective agent for stroke.

Although ischemic stroke is the third most common cause of death in the United States and Europe, the only currently approved medical treatment is administration of intravenous recombinant tissue plasminogen activator within 3 h of stroke onset, aimed at restoring cerebral blood flow1. The permanent occlusion of a cerebral artery leads to a mainly necrotic neuronal death by a complex pathogenetic cascade of events that include energy depletion, excitotoxicity and peri-infarct depolarization. There is also a more delayed mechanism involving both inflammation and apoptosis, apoptotic mechanisms becoming more prominent in milder transient ischemias (refs. 2–4; reviewed in ref. 5). Therapeutic interventions targeted to these more delayed events allow a longer therapeutic window, as in the case of caspase-3 inhibition after transient MCAO in the mouse6. Although several neuroprotective strategies were able to reduce the lesion volume in animal models, clinical trials have not been successful up to now7,8. Several explanations have been proposed for this failure: that animal experiments emphasize infarct volume rather than functional outcome as the primary endpoint, whereas functional outcome is the relevant parameter in patients2; that standard histological evaluation takes account of perikaryal damage but ignores axonal injury, which also contributes to the resulting neurological deficit7,9,10; that infarct volume is often assessed only at early time points; and that some observed effects may result from delaying rather than preventing cell death7. Most importantly, some compounds are protective only when given close to the time of injury, and an extended therapeutic window (the time after injury during which the treatment is still effective) is critical because most stroke patients reach the emergency room more than 3 h after stroke onset, beyond the therapeutic window for thrombolyis7.

The main mechanism underlying neuronal death in stroke and anoxic and traumatic brain damage is excitotoxicity, which is triggered by the excessive activation of ionotropic glutamate receptors, particularly those of the N-methyl-D-aspartate (NMDA) subtype, leading to a rapid influx of Ca2+ that triggers cell death11,12. Despite the initial promise of glutamate antagonists and Ca2+ channel blockers for the reduction of excitotoxic damage, clinical trials with these agents had to be abandoned because of toxic side effects7. As glutamate receptor activation and Ca2+ entry occur very early, the therapeutic time window is narrow. Furthermore, recent evidence shows that the NMDA antagonist MK-801 does not prevent axonal damage in the white matter, which probably explains its limited efficacy in improving functional outcome after stroke13. Targeting signaling events further downstream in the excitotoxic cascade should allow delayed therapeutic intervention to be effective. JNK is activated in the ischemic neurons14 downstream of the activated glutamate receptors and seems to be involved in mediating neuronal death15,16. A role for JNK in the excitotoxic apoptosis of hippocampal neurons in vivo has been inferred from JNK-3-deficient mice17, whose central nervous systems undergo normal development (including developmental cell death, which involves JNK-1 and JNK-2 but not JNK-3; ref. 18). After a systemic injection of kainate, however, adult JNK-3-deficient mice showed a reduction in seizure activity and apoptosis was prevented. Mice with an inactive form of the major JNK target, c-Jun, also showed...
resistance to excitotoxic neuronal death19, suggesting that preventing JNK from accessing c-Jun might confer protection.

Here we have used cell-penetrating peptides to block selectively the access of JNK to c-Jun and other substrates by a competitive mechanism20,21. These peptides were obtained by linking the 10-amino-acid HIV Tat(48–57) transporter sequence22 to the 20-amino-acid JNK-binding motif (JBD\textsubscript{20}) of JNK-interacting protein-1/islet-brain 1 (JIP-1/IB1). JIP-1/IB1 and c-Jun share a similar binding motif, but JNK’s affinity of binding to JIP-1/IB1 is about 100-fold higher. In addition, we synthesized not only the L-form of the JNK-inhibitory peptide (l-JNKI-1) but also the protease-resistant all-\textit{D}-retroinverso form (d-JNKI-1) to expand its half-life \textit{in vivo}. The use of \textit{d}-amino acids seemed particularly crucial for treating neurons, especially because the Tat sequence is essentially made up of pairs of amino acids (six in total) that render it extremely sensitive to the neuronal proteases involved in peptide processing in the nervous system23,24. We here show that l-JNKI-1 is an extremely potent neuroprotectant \textit{in vivo} against cerebral ischemia, with a remarkably long therapeutic window and a strong effect both on functional outcome and lesion size.

RESULTS

Effects of the peptides \textit{in vitro} and in cultured neurons

The JNKI peptides used in this study, which have been already described, are aimed at blocking the access of JNK to c-Jun and other substrates by a direct competitive mechanism20,21. The inhibitory effect of l-JNKI-1 and d-JNKI-1 on JNK action is shown by their prevention of phosphorylation \textit{in vitro}, by JNK-1\textsubscript{1}, of two known JNK targets: c-Jun and Elk-1 (Fig. 1a); these decreases in phosphorylation were quantified: 50 \textmu M d-JNKI-1 decreased phosphorylated c-Jun by 95% and phosphorylated Elk-1 by 100%; 10 \textmu M l-JNKI-1 decreased phosphorylated c-Jun by 98% and phosphorylated Elk-1 by 100%. The inhibition can be produced by JBD\textsubscript{20} alone (l-JNKI-1 without the Tat sequence; Fig. 1b). Phosphorylated c-Jun levels with respect to control (100%) were 103% with 0.25 \textmu M JBD\textsubscript{20}, 10% with 2.5 \textmu M JBD\textsubscript{20} and 1% with 25 \textmu M JBD\textsubscript{20}. Below 50 \textmu M, Tat had no influence on the inhibitory properties of JBD\textsubscript{20}. JBD\textsubscript{20} also inhibits other JNK targets including ATF-2, IRS-1, MADD and Bcl-xL, and in all cases the half-maximal inhibitory concentration is about 1 \textmu M (data not shown).

To determine the specificity of the peptides in blocking JNK action, we first characterized the effects of the peptides on the activity of 40 different kinases (10 \textmu M peptides, 10 \textmu M ATP) toward their respective substrates \textit{in vitro} (the complete list of kinases used in this study can be found at http://www.upstate.com/img/pdf/KinaseProfiler.pdf). Apart from an expected effect on the JNKs and the MKK-4 and MKK-7 kinases (whose susceptibility to the JNKI peptides is predictable because they contain JNK-binding domains), the peptides (l- and d-JNKI-1) were completely unable to interfere with the activities of all other kinases. We also showed that concentrations up to 500 \textmu M of the JBD\textsubscript{20} peptides did not interfere with the activity of six selected kinases, including extracellular signal–related kinase (ERK), p38, protein kinase C, p34, calcium/calmodulin-dependent protein kinase and...
protein kinase A (Fig. 1c). This level of specificity is far above those achieved with other small chemical inhibitors of the enzyme and shows the extremely high selectivity of the JNKI peptides.

We then analyzed the effects of the peptides on different JNK targets inside neurons. Activation of JNK in NMDA-treated cortical neurons in culture was estimated with kinase assays of pulled-down JNK using glutathione S-transferase (GST)-c-Jun. The increase in JNK activity was maximal (2.2 fold) after 30 min of NMDA treatment (Fig. 2a), and resulted in an elevation in the phosphorylation of JNK (Fig. 2b) and c-Jun (Fig. 2c). Addition of the cell-penetrating peptides L-JNKI-1 or D-JNKI-1 (both 2 µM) completely prevented the increase in phosphorylation of c-Jun after 5 h of exposure to 100 µM NMDA, bringing it below even the control level, but did not affect the phosphorylation of JNK (Fig. 2d). The peptides completely protected neurons against the excitotoxic effects of NMDA (Fig. 3) or 100 µM kainate (data not shown), whereas control peptides had no effect. The D-form of the peptides was superior in protecting neurons for extending periods of time (Fig. 3).

Neuroprotection against focal cerebral ischemia
To test the feasibility of using cell-permeable peptides in vivo, we first evaluated their penetration into the brain, showing that FITC-labeled L-JNKI-1 and D-JNKI-1 were both able to cross the blood-brain barrier and penetrate neurons of adult mice and P5 rats within 1 h after an intraperitoneal injection (data not shown).

In a model of mild ischemia in mice, we occluded the left middle cerebral artery for 30 min, followed by 48 h of reperfusion (Fig. 4).
Achievement of ischemia, followed by reperfusion, was confirmed in all animals by monitoring regional cerebral blood flow in the area of the left middle cerebral artery (Table 1). In the vehicle-treated group, this resulted systematically in a major infarction, containing severely pyknotic cells, predominantly in the cortex, striatum and, in seven of the brains, the hippocampus. The mean volume of the infarction was 67.4 mm3 ($n=12$). There was also a twofold increase in JNK activation that was maintained for at least 24 h (Fig. 4a). We therefore evaluated the efficacy and therapeutic window of treatment with intracerebroventricular (i.c.v.) injection of D-JNKI-1 (15.7 ng in 2 µl PBS). Pretreatment 1 h before MCAO substantially decreased the infarct volume measured 48 h after reperfusion by 88%, to 7.8 mm3 ($P=0.0006$; Fig. 4a,b and Supplementary Fig. 1 online). Administration of the peptide 3 or 6 h after MCAO was still potently protective, reducing the mean infarct volumes to 5.8 mm3 and 4.8 mm3, respectively, diminishations of 91% ($P<0.0001$) and 93% ($P=0.0001$) compared with untreated animals. In contrast, peptide injection at 12 h was not significantly protective. To assess whether D-JNKI-1 really prevented cell death or only delayed it, we extended our observations to the longer survival time of 14 d after ischemia, with D-JNKI-1 administration at 6 h. Even in untreated mice the lesion shrank more than 50% over this period, but D-JNKI-1 also significantly decreased infarct volume by 93%, just as with the shorter (48 h) survival time (Fig. 4c).

We then generated an ischemic zone in the cerebral cortex of young rats (P14) by subjecting them to permanent distal MCAO, thereby inducing a zone of massive degeneration restricted to the parietotemporal cortex. Because the brain volumes of these rats were somewhat variable, we expressed the lesions as a percentage of the volume of the cerebral hemisphere. D-JNKI-1 (11 mg/kg intraperitoneally, or ∼340 µg) was given 30 min before, or 6 or 12 h after, the arterial occlusion, and the rats were fixed at 24 h after occlusion. At all three time points of administration, D-JNKI-1 caused major and statistically significant decreases of 68% ($P=0.0006$), 78% ($P=0.0004$) and 49% ($P=0.02$), respectively, in the infarct volume as compared with control animals (Fig. 5a–c). In rats fixed 7 d after occlusion, the infarct had shrunken considerably in both D-JNKI-1–injected and control groups, but there was still significant ($P=0.02$) protection by D-JNKI-1 (Fig. 5d,e).

We used immunohistochemistry to analyze the activation of the c-Jun transcription factor, a major target of JNK, in the brains of rat pups with permanent ischemia. Phosphorylated c-Jun was evident in many neurons in the peri-infarcted cortex up to about 2 mm from the lesion (Fig. 5f), although not in the infarct itself. In contrast, in the D-JNKI-1–treated brains, the peri-infarcted cortex was negative and there were only a few detectable positive neurons at the very border of the infarct.

Behavioral evaluation after transient ischemia in mice

We investigated the behavioral effects of transient MCAO in mice treated with D-JNKI-1 6 h after ischemia and in untreated mice, using the rotarod test19 before MCAO and at 1, 3, 7 and 14 d afterwards. There was no difference between the two groups before ischemia, but at all subsequent time points the D-JNKI-1–treated mice performed better (overall effect, $P=0.004$ by repeated-measures ANOVA). The untreated mice suffered a major reduction in locomotor performance during ischemia, followed by reperfusion, with a short time window of 24–36 h between the two periods (Fig. 4b). In untreated animals, ischemia alone (no reperfusion) resulted in a marked functional deficit, with a 50% decrease in performance 24 h after MCAO ($P<0.0001$; Table 1). D-JNKI-1 administration 1 h before MCAO provided a statistically significant protection for this time period ($P=0.0001$; Table 1). In contrast, at 6 or 12 h after ischemia, there was no significant difference from animals injected with vehicle alone. These results indicate that D-JNKI-1 significantly protected against early functional impairment after transient MCAO. To further examine the long-term effect of D-JNKI-1, mice were examined 14 d after MCAO. The improvements in the mice treated with D-JNKI-1 at 1 h after ischemia were maintained, with a 50% improvement in performance at 14 d after MCAO ($P=0.004$; Table 1). However, injection 6 or 12 h after ischemia did not result in significant protection. These results indicate that D-JNKI-1 provided significant protection against early functional impairment after transient MCAO. To further examine the long-term effect of D-JNKI-1, mice were examined 14 d after MCAO. The improvements in the mice treated with D-JNKI-1 at 1 h after ischemia were maintained, with a 50% improvement in performance at 14 d after MCAO ($P=0.004$; Table 1). However, injection 6 or 12 h after ischemia did not result in significant protection. These results indicate that D-JNKI-1 provided significant protection against early functional impairment after transient MCAO.

Figure 4 Transient ischemia in mice. (a) JNK assay showing increased JNK activation between 1 and 24 h after ischemia. “No lesion” denotes animals not exposed to ischemia. (b) Infarct volume 48 h after i.c.v. injection of 15.7 ng D-JNKI-1, at different times before (−1 h) or after (+3, 6 or 12 h) MCAO. *, $P=0.0006$ for −1 h, $P<0.0001$ for 3 h and $P=0.0001$ for 6 h, as compared with control. One outlying value (>2 s.d. above mean) was excluded from 3 h group. Cresyl violet–stained sections show typical examples of infarct. Scale bar, 1 mm. Ctrl, vehicle control. *n=12 for control, 4 for −1 h, 8 for +3 h, 4 for +6 h and 4 for +12 h.

(c) Infarct volume 14 d after MCAO, in animals that were given vehicle (Ctrl; $n=11$) or 15.7 ng D-JNKI-1 (D-JNKI-1 + 6 h; $n=9$) i.c.v. 6 h after MCAO. *, $P<0.001$ compared with control. (d) Rotarod evaluation of the two groups of mice in e, showing significant behavioral sparing ($P=0.004$). Upper curve, D-JNKI-1; lower curve, untreated. Error bars represent s.e.m.
Figure 5 Protection by D-JNKI-1 against permanent focal ischemia in P14 rats. Rats were perfused 24 h (a,b,c,f) or 7 d (d,e) after MCAO. (a) Cresyl violet-stained sections showing examples of lesions from a control rat and from one treated with D-JNKI-1, 6 h after occlusion. Dorsal side is up. Scale bar, 1 mm. (b) Infarct volumes (expressed as percentage of hemispheric volume) after intraperitoneal injections of D-JNKI-1 at different times before (–0.5 h) or after (+6 h; +12 h) occlusion. * = 7 for control (Ctrl), 6 for ‘–0.5 h’, 5 for ‘+6 h’ and 5 for ‘+12 h’. *, P = 0.0006 for ‘–0.5 h’, P = 0.0004 for ‘+6 h’ and P = 0.02 for ‘+12 h’, as compared with control. (c) Areas of individual sections in a ‘+6 h’ rat and in a control, both fixed at 24 h. (d) Infarct volumes 7 d after MCAO in untreated (Ctrl) and D-JNKI-1–treated rats. * = 5 for control and 8 for D-JNKI-1–treated. *, P = 0.02. (e) Areas of individual sections in a ‘+6 h’ rat and a control, both fixed at 7 d. (f) Immunohistochemistry for phosphorylated c-Jun (using antibody against Ser63 phosphorylation site of c-Jun) in ischemic region of cortex of control (untreated) rats, with or without a blocking peptide for the Ser63 site, and of rats treated with D-JNKI-1 at –0.5 h. Scale bar, 100 µm.

1 d after ischemia and then improved only slowly (Fig. 4d). D-JNKI-1–treated mice improved substantially over the 14-d period (P = 0.008 by linear regression test), implying that D-JNKI-1 did not prevent motor learning. We also showed that motor coordination was unimpaired with an i.c.v. dose of D-JNKI-1 ten times above the standard dose (Supplementary Table 1 online)

DISCUSSION
We have established here that a cell-penetrating peptide selectively blocks the interaction between JNK and its substrate(s) and is effective in vivo, potently decreasing brain lesions in both transient and permanent ischemia. Most notably, the level of protection is still very high when D-JNKI-1 is administered as late as 6 or 12 h after ischemia in our animal models. Extrapolating to human stroke, such a window would be sufficient for many patients to be treated in time to prevent cell death. Although 30–50% neuroprotection has previously been reported with various compounds administered up to 24 h after ischemia, the protection at 6 h after ischemia in both of our models is by far the strongest ever reported at this time point. In the transient ischemia model, late administration (at 6 h) also reduced the behavioral consequences of the lesion for at least 14 d.

In contrast to many neuroprotective studies that intervene at the level of glutamate receptors or events immediately downstream of those receptors, such as free radical generation, our JNKI-1 peptides act further downstream. It seems certain that the pathways responsible for the neuroprotection by I- and D-JNKI-1 do not depend on feedback onto glutamate receptors, because the peptides protect against excitotoxicity mediated by two different receptors (NMDA and kainate) and do not affect the activation or phosphorylation of JNK, but only its action on its targets. The exact mechanism by which late (after 6 or 12 h) administration of D-JNKI-1 protects despite early activation of JNK is unknown, but our data indicate that continuous JNK activation for at least 6 h is required for efficient cell death in cerebral ischemia. In addition, the reduction in infarct volume obtained with D-JNKI-1 is larger than that reported with inhibition of glutamate receptors, which are upstream of JNK and whose activation is the major factor responsible for ischemic damage. One possible explanation for our higher level of protection is that our peptides might inhibit additional ischemia-related stress signals that are independent of glutamate receptors, such as calcium entry through other kinds of calcium channels or loss of trophic factors. Alternatively, the lesser protection by glutamate antagonists might be a result of their inhibition of survival pathways not affected by the peptides. Nor can we completely rule out indirect effects mediated by the peptides such as local hypothermia, or diminished death signals from non-neuronal cells.

Despite many reports of compounds showing significant neuroprotection in experimental models of stroke, no major clinical trial of a neuroprotectant has shown improved outcome. Many trials, such as those of the NMDA receptor antagonists Selfotel (CGS19755) and Aptiganel (Cerestat), have been halted because of poor risk-benefit ratios, and those that completed phase 3 (such as the GABAergic facilitator Zendra (Clomethiazole) and the ICAM-1–specific monoclonal antibody Enlimomab) did not show significant improvement of primary outcome measures. The lack of efficacy of a number of neuroprotectants in clinical trials may be a consequence of their poor therapeutic ratios, calculated as the ratio between the minimum effective doses for significant impairment in rotarod performance and for significant neuroprotection. In view of the high therapeutic ratio...
(much greater than 10 in this study) and long therapeutic window of d-JNKI-1, intervention in the JNK pathway seems to be a plausible approach for the development of stroke therapy. Although caution is required in view of JNK’s involvement in metabolic regulation and neuronal plasticity and regeneration, inhibition of only some of JNK’s actions (as with d-JNKI-1) for only a few days (as would be required for stroke therapy) may turn out to be feasible. It is encouraging that mice continued to improve their rotarod performance under the influence of d-JNKI-1 while showing no negative effects.

Finally, the therapeutic potential of JNK-inhibitory treatment may extend to other pathologies with an excitotoxic component. These include all hypoxic, ischemic and traumatic brain damage, and neuronal death arising from epileptic seizures. In addition, an excitotoxic component has been suggested for several neurodegenerative diseases.

METHODS

Cortical neuronal culture. We dissected small pieces of cortex from the brains of 2–3-day-old rat pups, incubated them with 200 units of papain for 30 min at 34 °C and plated the neurons at densities of approximately 1×10⁶ cells/plate on cover slips precoated with 100 µg/ml poly-d-lysine. The culture medium was B27/Neurobasal (Life Technologies) supplemented with 0.5 mM glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin.

Lactate dehydrogenase (LDH) cytotoxicity assay. We measured LDH released into the culture medium with the Cytox 96 nonradioactive cytotoxicity assay kit (Promega).

GST-c-Jun pull-down kinase assay. We prepared extracts from neuronal cultures by scraping cells in lysis buffer. Cerebral hemispheres were homogenized, after removal of the frontal and occipital poles, in a Dounce homogenizer in lysis buffer. Samples (25 µg) were incubated for 1 h at room temperature with 1 µg GST-c-Jun (amino acids 1–89) and 10 µl of glutathione-agarose beads (Sigma). After four washes in lysis buffer, we resuspended the beads in the same buffer and did kinase assays as described below.

Kinase assays. We performed in vitro kinase assays using recombinant JNK-1-tet1 (0.5 µg; Upstate Biotechnology) and 0.5 µg of substrates (GST-fusion proteins, cascin or histone; Sigma; see Fig. 1 and ref. 20).

Separation of nuclei from cytoplasm. To isolate nuclei for western blot analyses (Fig. 2b), we lysed neurons for 15 min in lysis buffer, centrifuged the samples at 300 g for 10 min at 4 °C, reconstituted the nuclear pellets in lysis buffer and sonicated them.

Real-time RT-PCR. We did real-time RT-PCR using specific primers on a LightCycler apparatus (Roche). We used the housekeeping actin transcript to normalize the amount and quality of the RNA that were extracted by the Chomczynski method. We used the following primers: c-Fos forward, 5′-GCTGACAGATACACTCCAAG-3′; c-Fos reverse, 5′-CCTAGATGATGCCGGAAG-3′; actin forward, 5′-AACCAGCTCCGCGATGTGCAA-3′; actin reverse, 5′-ATTTGAAGGTTGTGGCTCCA-3′.

Transient ischemia in adult mice. Using male ICR-CD1 mice (~6 weeks old; 18–37 g; Harlan), we provoked ischemia by introducing a filament from the common carotid artery into the internal carotid and advancing it into the arterial circle, thereby occluding the middle cerebral artery. We measured temperature with 1 µg GST-c-Jun (amino acids 1–89) and 10 µl of glutathione-agarose beads (Sigma). After four washes in lysis buffer, we resuspended the beads in the same buffer and did kinase assays as described above.

Assessment of motor performance by the rotarod method. The mice were trained twice a day for 5 d and on the morning of the experimental day in order to reduce the variability between subjects. Both training and test sessions were identical for control and injected mice. We examined the motor function immediately before the injection (Table 2) and 1, 3, 6 and 14 d later. The mice were placed on the rotarod, set to accelerate uniformly from 4 to 40 r.p.m. over 5 min, and their latency to falls was recorded.

Statistics. Data from both models of ischemia were transformed logarithmically when necessary to satisfy the Gaussian criterion, and analyzed with overall ANOVA (P < 0.0001 for both models; Figs. 4b and 5b), followed by one-tailed unpaired t-tests.

ACKNOWLEDGMENTS

This work was supported by grants 31-50598.97, 32-54119.98, 31-61736.08, 32-65193.01 and 3200-68306.02 from the Swiss National Science Foundation, the San Paolo Bank (Italy) and the Alzheimer Project (Italian Ministry of Health). We are particularly grateful to P. Nicod and the Botnar Foundation for human and financial support. We thank E. Bernardi, I. Favre, V. Mottier and A. Oberson for assistance; R. Kraftsky for help with computation and statistics; and J.-Y. Chatton and A. Volterra for critical comments on the manuscript.

COMPETING INTERESTS STATEMENT

The authors declare competing financial interests (see the Nature Medicine website for details).

Received 12 March; accepted 22 July 2003

Published online at http://www.nature.com/naturemedicine/

